Pricing Pollution:

Asset-Pricing Implications of the EU Emissions Trading **System**

Joop Huij*, Dries Laurs, Philip Stork, Remco C.J. Zwinkels

*Rotterdam School of Management and Robeco Institutional Asset Management §Vrije Universiteit Amsterdam and Robeco Institutional Asset Management [†]Vrije Universiteit Amsterdam [‡]Vrije Universiteit Amsterdam and Tinbergen Institute

> CEMA 2024 Annual Meeting June 25th, 2024

Background on EU ETS

- EU Emission Trading System (EU ETS) is world's largest carbon market
- Objective: Reduce net emissions by 55% by 2030 compared to 1990
- How? By limiting total emissions and letting operators trade emission allowances ("cap-and-trade")
- System forms the backbone of European Commission's decarbonization strategy
- 1.2 billion tonnes of CO₂-e emissions covered in 2022 40% of EU-wide emissions

Contribution

RQ: How does EU ETS affect stock prices of the firms it regulates?

■ Stock market reaction to EU ETS non-compliance

Contribution

RQ: How does EU ETS affect stock prices of the firms it regulates?

- Stock market reaction to EU ETS non-compliance
- Effects of carbon pricing on stock prices over *all* operational phases of the EU ETS and for *both European and non-European* stocks

Contribution

RQ: How does EU ETS affect stock prices of the firms it regulates?

- Stock market reaction to EU ETS non-compliance
- Effects of carbon pricing on stock prices over *all* operational phases of the EU ETS and for *both European and non-European* stocks
- Methodological: *historically representative* installation→ownership link

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe
- 2 Stock prices of regulated firms quickly respond to changes in the carbon price

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe
- 2 Stock prices of regulated firms quickly respond to changes in the carbon price
 - Direction of response depends on whether firm is "long" or "short" allowances

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe
- 2 Stock prices of regulated firms quickly respond to changes in the carbon price
 - Direction of response depends on whether firm is "long" or "short" allowances
 - This relationship varies considerably over the operational phases of the EU ETS, and already appears in Phase II

- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe
- 2 Stock prices of regulated firms quickly respond to changes in the carbon price
 - Direction of response depends on whether firm is "long" or "short" allowances
 - This relationship varies considerably over the operational phases of the EU ETS, and already appears in Phase II
 - Interestingly, both European and non-European stocks respond to carbon prices

Related literature

- Impact and effectiveness of the EU ETS
 - Relatively low effectiveness of EU ETS in first phases, e.g. Anderson and DiMaria (2011)
 - EU ETS led to about 10% additional reduction in emissions (Dechezleprêtre, Nachtigall and Venmans (2023); Bayer and Aklin (2020))

Related literature

- Impact and effectiveness of the EU ETS
 - Relatively low effectiveness of EU ETS in first phases, e.g. Anderson and DiMaria (2011)
 - EU ETS led to about 10% additional reduction in emissions (Dechezleprêtre, Nachtigall and Venmans (2023); Bayer and Aklin (2020))
- Carbon prices and the stock market
 - Positive association between carbon prices and stock prices in earlier phases (Oberndorfer (2009); Veith, Werner, and Zimmermann (2009); Oestreich and Tsiakas (2015)).
 - Sensitivity depends on allocation: Bolton, Lam, and Mûûls (2023);
 Hengge, Panizza, and Varghese (2023);
 Millischer, Evdokimova and Fernandez (2023)

Related literature

- Impact and effectiveness of the EU ETS
 - Relatively low effectiveness of EU ETS in first phases, e.g. Anderson and DiMaria (2011)
 - EU ETS led to about 10% additional reduction in emissions (Dechezleprêtre, Nachtigall and Venmans (2023); Bayer and Aklin (2020))
- Carbon prices and the stock market
 - Positive association between carbon prices and stock prices in earlier phases (Oberndorfer (2009); Veith, Werner, and Zimmermann (2009); Oestreich and Tsiakas (2015)).
 - Sensitivity depends on allocation: Bolton, Lam, and Mûûls (2023);
 Hengge, Panizza, and Varghese (2023);
 Millischer, Evdokimova and Fernandez (2023)
- Carbon pricing and (macro-)economic effects, e.g. Känzig (2023)

Data

- Emissions and allowances of stationary installations from the European Union Transaction Log (EUTL) Example
 - Obtain data on over 15,000 installations from 2005 to 2023
 - Also download compliance codes that indicate compliance with the EU ETS' regulations
- 2 Subsidiary firm records from Bureau van Dijk's Orbis Global
 - Combine our own approach with that of Letout (2022) to merge installations in EUTL to subsidiary firms
 - Results in matching subsidiary for 96.1% of installations, representing 98.7% of verified emissions
- 3 International stock returns and corporate financial data from Refinitiv Eikon
- 4 Prices of futures on EUAs from FactSet Plot
 - ICE's front future contract as main proxy (FactSetID 'ECF-FDS')
 - Several others considered in robustness tests Correlations

Linking subsidiaries to parent companies

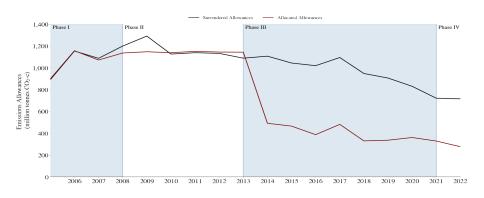
Follows procedure by Jaraitė and DiMaria (2016)

- Start with a list of BvD IDs for all subsidiary firms linked to the sample of EU ETS installations;
- 2 For each BvD ID in this list, extract the BvD ID(s) of its shareholder(s) as of December for each year from 2005 to 2022;
- 3 For the shareholder's or shareholders' BvD ID(s), extract the BvD ID(s) of its shareholder(s) as of December for each year from 2005 to 2022:
- 4 Continue to query for shareholders of shareholders until no shareholders can be found;

Variable construction

■ Firm-level verified emissions

$$\text{Verified Emissions}_{i,t} = \sum_{j=1}^{N_{i,t}} \text{Ownership}_{i,j,t} \times \text{Verified Emissions}_{i,j,t}$$


■ Firm-level allocated allowances

$$\mathsf{Allocated} \ \mathsf{Allowances}_{i,t} = \sum_{j=1}^{N_{i,t}} \mathsf{Ownership}_{i,j,t} \\ \times \mathsf{Allocated} \ \mathsf{Allowances}_{i,j,t}$$

Allocation shortfall

Allocation Shortfall_{i,t} =
$$1 - \frac{\text{Allocated Allowances}_{i,t}}{\text{Verified Emissions}_{i,t}}$$

Allocated vs. verified emissions aggregated over all firms in sample

Allocated vs. verified emissions by industry

		All F	hases	Ph	ase I	Pha	ase II	Pha	ise III	Pha	ise IV
Industry	Firms	Emissions	Allocations								
Energy	44	1,906.58	1,607.84	105.14	110.33	578.32	598.43	936.45	733.46	286.68	165.63
Materials	197	3,839.74	4,089.93	177.16	205.69	950.12	1,173.46	1,974.29	2,034.80	738.17	675.97
Industrials	126	353.91	347.23	27.49	27.98	125.17	138.82	154.61	155.32	46.65	25.11
Cons. Discr.	56	79.17	66.83	3.65	4.26	19.26	24.19	37.93	30.72	18.33	7.65
Cons. Staples	66	62.00	55.10	2.25	2.63	17.39	20.78	32.11	25.80	10.26	5.89
Health Care	33	40.01	38.11	2.73	3.18	15.66	16.72	18.25	16.03	3.38	2.19
Financials	48	106.17	109.57	43.32	53.05	15.83	18.33	36.63	30.45	10.40	7.75
Utilities	56	10,100.07	5,224.14	614.43	568.72	3,491.80	2,995.00	4,912.31	1,615.98	1,081.52	44.44
Other	33	6.58	8.15	0.57	0.88	2.10	3.30	3.01	3.37	0.89	0.60

Top 20 firms by verified emissions in 2022

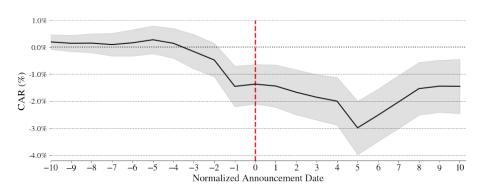
Company	Country	Verified Emissions (10 ⁶ tonnes CO ₂ -e)	Allocated Allowances (10 ⁶ tonnes CO ₂ -e)	Allocation Shortfall (%)	Allocation Shortfall (€ millions)
PGE POLSKA GRUPA ENERGETYCZNA SA	POLAND	70.18	0.62	99.12%	5,573
RWE AG	GERMANY	64.78	0.85	98.69%	5,122
ARCELORMITTAL SA	LUXEMBOURG	61.31	55.03	10.24%	503
THYSSENKRUPP AG	GERMANY	25.40	22.20	12.60%	256
ENEA SA	POLAND	22.29	0.15	99.33%	1,774
ENGIE SA	FRANCE	22.15	0.55	97.50%	1,730
CEZ AS	CZECH REPUBLIC	21.62	0.35	98.40%	1,704
ENI SPA	ITALY	21.49	7.88	63.31%	1,090
HEIDELBERG MATERIALS AG	GERMANY	21.36	18.42	13.75%	235
ENEL SPA	ITALY	20.48	0.02	99.92%	1,639
FORTUM OYJ	FINLAND	18.38	0.75	95.92%	1,412
TOTALENERGIES SE	FRANCE	17.02	11.21	34.12%	465
ORLEN SA	POLAND	16.57	7.56	54.37%	722
ELECTRICITE DE FRANCE SA	FRANCE	15.31	0.28	98.14%	1,203
PUBLIC POWER CORPORATION SA	GREECE	13.83	0.02	99.83%	1,106
CRH PLC	IRELAND	13.48	10.46	22.37%	242
VOESTALPINE AG	AUSTRIA	12.96	9.10	29.82%	310
TAURON POLSKA ENERGIA SA	POLAND	12.45	0.16	98.71%	984
BASF SE	GERMANY	12.00	9.19	23.37%	225
ENBW ENERGIE BADEN WUERTTEMBERG AG	GERMANY	11.45	0.19	98.33%	902

Descriptive statistics

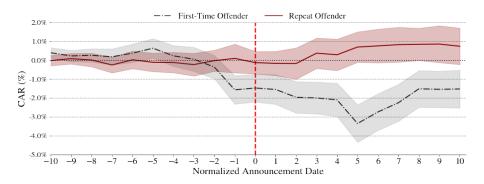
							Percentile	S		
	N. Obs.	Mean	SD	1%	5%	25%	Median	75%	95%	99%
Panel A: Market variables										
Excess Return* (%)	2,791,950	0.041	2.445	-6.717	-3.447	-0.993	0.000	1.027	3.593	7.288
Return Volatility (%)	2,791,950	2.187	1.037	0.807	1.045	1.494	1.951	2.602	4.154	5.842
Market Capitalization (millions €)	2,031,680	17,489	52,923	11	81	991	4,039	15,536	72,976	190,521
β_{Market}	2,584,865	0.599	0.382	-0.166	0.045	0.335	0.565	0.833	1.275	1.615
β_{Size}	2,584,865	-0.023	0.719	-1.603	-1.134	-0.492	-0.055	0.406	1.203	1.907
β_{Value}	2,584,865	0.138	0.703	-1.524	-0.927	-0.263	0.095	0.500	1.328	2.215
$\beta_{Momentum}$	2,584,865	0.018	0.575	-1.497	-0.883	-0.278	0.009	0.302	0.938	1.645
Panel B: EU ETS & Emission variables										
Verified Emissions (in millions of tonnes CO2-e)	2,509,211	1.827	8.284	0.000	0.000	0.011	0.050	0.364	8.071	39.441
Allocated Allowances (in millions of tonnes CO2-e)	2,509,211	1.293	6.304	0.000	0.000	0.010	0.047	0.298	5.389	25.573
Total Emissions (in millions of tonnes CO2-e)	1,837,567	7.349	17.140	0.007	0.043	0.316	1.179	5.127	39.785	87.440
Allocation Shortfall (%)	2,429,350	19.553	29.301	0.000	0.000	0.000	0.000	30.412	93.234	100.000
Carbon Tax Rate (% of Mkt. Cap.)	1,850,303	0.205	1.275	-1.733	-0.297	-0.006	0.000	0.011	1.004	10.143
Panel C: Firm characteristics										
Return on Equity* (%)	1,851,839	14.686	18.777	-54.025	-5.230	6.889	12.390	19.914	43.390	105.923
Return on Assets* (%)	2,070,137	4.051	5.880	-18.053	-5.132	1.373	3.828	6.750	13.623	23.117
Book to Market*	2,066,612	0.881	0.888	-0.094	0.138	0.371	0.637	1.060	2.477	5.511
Leverage* (%)	2,069,979	27.889	15.001	0.071	4.187	17.143	26.605	37.083	56.141	68.921
PP&E to Assets* (%)	1,973,871	0.711	0.412	0.016	0.127	0.369	0.687	0.993	1.437	1.876
Investment to Assets*	1,906,343	0.078	0.132	0.000	0.001	0.011	0.034	0.087	0.282	0.809

Firms in sample by year and country

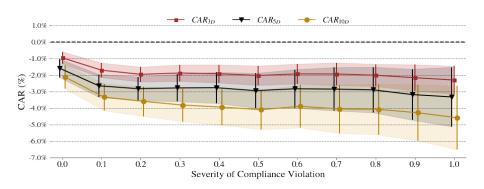
Evidence from event studies around


non-compliance

Event study regression specification


$$\mathsf{CAR}_{i,\tau,y} = \sum_{\tau = -10}^{10} \beta_\tau \mathbf{1}_{\tau,y}^{\mathsf{EventDay} \,=\, \tau} \times \mathbf{1}_{i,y}^{\mathsf{Non-Compliant}} \ + \sum_{\tau = -10}^{10} \gamma_\tau \mathbf{1}_{\tau,y}^{\mathsf{EventDay} \,=\, \tau} + \sigma_{i,y} + \varepsilon_{i,\tau,y}$$

- CAR $_{i, au,y}$ represents the cumulative abnormal return for firm i accumulated over the event days from -10 to au
- $\,$ $\,$ τ denotes a normalized event date and represents the number of days relative to the announcement date
- $1_{i,y}^{\text{Non-Compliant}}$ equals 1 if firm i owns at least one installation that fails to surrender allowances equal to verified emissions in compliance year y and otherwise zero
- \bullet $\sigma_{i,t}$ denotes an industry-by-year fixed effect


Stock market response to EU ETS non-compliance

Subsampling: First-time vs. repeat offenders

Subsampling: Severity of compliance violation

Regression specification

$$\mathbf{r}_{i,t}^e = \beta_0 \mathsf{AS}_{i,t} \times \mathbf{r}_t^{\mathsf{EUA}} + \beta_1 \mathsf{AS}_{i,t} + \lambda X_{i,t-1}' + \sigma_{i,t} + \mu_t + \varepsilon_{i,t}$$

- ullet r_t^{EUA} refers to the daily change in the settlement price of the EUA front futures contract traded on ICE
- $AS_{i,t}$ is the Allocation Shortfall defined as firm i's the proportion of non-allocated allowances to verified emissions in compliance year t and captures the extent to which firm i is reliant upon purchased allowances rather than allocated allowances to cover its emissions
- $X_{i,t-1}$ is a vector of (lagged) control variables
- lacksquare $\sigma_{i,t}$ denotes an industry-by-year fixed effect
- \blacksquare μ_t denotes a date fixed effect.

Allocation shortfall and carbon price sensitivity

Dependent variable:			Excess	Returns		
	(1)	(2)	(3)	(4)	(5)	(6)
Allocation Shortfall \times r^{EUA}	-1.4251***	-1.4280***	-1.8956***	-1.9051***	-1.8687***	-1.8620***
	(-3.336)	(-3.342)	(-3.966)	(-3.984)	(-3.824)	(-3.810)
Allocation Shortfall	0.0130	0.0131	0.0107	0.0111	0.0236*	0.0239*
	(1.337)	(1.337)	(0.890)	(0.925)	(1.771)	(1.802)
In(Market Cap.)	-	-0.0004	-	0.0006	-	-0.0060**
	-	(-0.230)	-	(0.259)	-	(-2.242)
Return on Equity	-	0.0003**	-	0.0004**	-	0.0001
	-	(2.144)	-	(2.117)	-	(0.700)
PP&E to Assets	-	0.0152**	-	0.0213***	-	0.0008
	-	(2.254)	-	(2.877)	-	(0.068)
Investment to Assets	-	-0.0303	-	-0.0417	-	-0.0107
	-	(-1.336)	-	(-1.602)	-	(-0.271)
Book to Market	-	0.0132***	-	0.0173***	-	0.0041
	-	(2.646)	-	(3.152)	-	(0.456)
Leverage	-	0.0072	-	-0.0016	-	0.0040
	-	(0.428)	-	(-0.074)	-	(0.174)
Market Beta	-	0.0231	-	0.0189	-	0.0501
	-	(1.029)	-	(0.830)	-	(1.525)
Date FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Domicile	All	All	EU	EU	Non-EU	Non-EU
N. Obs.	1,387,475	1,387,475	878,033	878,033	509,442	509,442
R ² -Adj.	0.213	0.213	0.258	0.258	0.198	0.199

Non-linearities in carbon price sensitivity

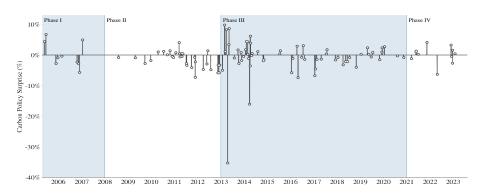
$$\begin{split} \mathbf{r}_{i,t}^{\mathrm{e}} &= \beta_0 \mathbf{1}_{i,t}^{\mathrm{Short \; Allocation}} \times \mathbf{r}_{t}^{\mathrm{EUA}} + \beta_1 \mathbf{1}_{i,t}^{\mathrm{Long \; Allocation}} \times \mathbf{r}_{t}^{\mathrm{EUA}} + \beta_2 \mathbf{1}_{i,t}^{\mathrm{Short \; Allocation}} \\ &+ \beta_3 \mathbf{1}_{i,t}^{\mathrm{Short \; Allocation}} + \lambda X_{i,t-1}' + \sigma_{i,t} + \mu_t + \varepsilon_{i,t} \end{split}$$

- $1_{i,t}^{Short Allocation}$ is an indicator variables that indicates whether a firm's allocated emissions relative to verified emissions are below the 25^{th} percentile of the distribution
- $1_{i,t}^{\text{Long Allocation}}$ is an indicator variables that indicates whether a firm's allocated emissions relative to verified emissions are above the 75th percentile of the distribution

Non-linearities in carbon price sensitivity

Dependent variable:			Excess R	eturns		
	(1)	(2)	(3)	(4)	(5)	(6)
1_{Short} Allocation $ imes r^{EUA}$	-0.3382* (-1.939)	-0.3389* (-1.942)	-0.5859** (-2.542)	-0.5875** (-2.546)	-0.2730 (-1.022)	-0.2699 (-1.010)
1 _{Short} Allocation	0.0035 (0.710)	0.0039 (0.790)	0.0042 (0.688)	0.0051 (0.821)	0.0027 (0.341)	0.0012 (0.154)
$1_{Long}\ Allocation imes r^{EUA}$	0.4190*** (2.748)	0.4199*** (2.752)	0.5081*** (2.710)	0.5096*** (2.715)	0.3702* (1.675)	0.3682* (1.665)
1_{Long} Allocation	-0.0000 (-0.008)	-0.0006 (-0.144)	0.0045 (0.858)	0.0032 (0.622)	-0.0077 (-1.150)	-0.0080 (-1.205)
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls	No	Yes	No	Yes	No	Yes
Regions	All	All	EU	EU	Non-EU	Non-EU
N. Obs.	1,480,101	1,480,101	925,068	925,068	555,033	555,033
R^2 -Adj.	0.208	0.208	0.254	0.254	0.193	0.193

Inference from a high-frequency event study


Regression specification

$$\mathbf{r}_{i,t}^{\mathrm{e}} = \alpha + \beta_0 \; \mathsf{AS}_{i,t} \times \mathbf{r}_t^{\mathsf{EUA}} \times \mathbf{1}_t^{\mathsf{Regulatory \; Event \; Day}} + \beta_1 \; \mathsf{AS}_{i,t} \times \mathbf{r}_t^{\mathsf{EUA}} + \sigma_i + \phi_{i,t} + \varepsilon_{i,t},$$

Where:

- $ightharpoonup r_{i,t}^e$ denotes firm i's return in excess of the risk-free rate on day t
- AS_{i,t} is the firm's Allocation Shortfall, $1_t^{\text{Regulatory Event Day}}$ is an indicator variable equal to one if day t is a Känzig (2023) regulatory event day and equal to zero otherwise
- r_t^{EUA} is the daily return on the EUA futures' price
- \bullet σ_i is a firm fixed effect
- \bullet $\phi_{i,t}$ is an industry-by-year fixed effect

Känzig (2023) Carbon Policy Surprise Index

Identification using a high-frequency event study around climate policy events

Dependent variable:		Excess	Returns	
	(1)	(2)	(3)	(4)
Allocation Shortfall	-0.1811	-0.0561	-0.1174	-0.2019
	(-1.037)	(-0.314)	(-0.358)	(-1.147)
Allocation Shortfall $\times r^{EUA}$	1.1556***	-	-	1.1836***
	(8.589)	-	-	(8.597)
Allocation Shortfall \times Climate Policy Event	-	-0.0190	-	0.2585
	-	(-0.017)	-	(0.244)
Allocation Shortfall \times r^{EUA} \times Climate Policy Event	-	-	0.2220	-0.9878***
	-	-	(0.721)	(-3.046)
Firm FE	Yes	Yes	Yes	Yes
Country \times Sector \times Year FE	Yes	Yes	Yes	Yes
N. Obs.	2,392,451	2,392,451	2,392,451	2,392,451
R^2 -Adj.	0.198	0.196	0.191	0.198

Conclusion

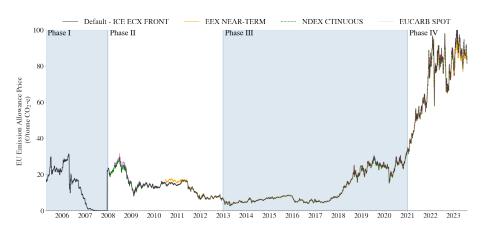
- Non-compliance events in the EU ETS have strong negative effects on stock prices
 - Firms that do not comply with the EU ETS have their stock prices decrease by at least 2% in the 5 days surrounding the announcement of non-compliance
 - Effects are exclusively driven by "first-time offenders" and are non-existent for "repeat offenders"
 - Announcement returns are more negative for violations that are more severe
- 2 Stock prices of regulated firms quickly respond to changes in the carbon price
 - Direction of response depends on whether firm is "long" or "short" allowances
 - This relationship varies considerably over the operational phases of the EU ETS, and already appears in Phase II
 - Interestingly, both European and non-European stocks respond to carbon prices

Appendix

Appendix: Example of EUTL data

Appendix: Number of firms in sample by country

Country	N.o. Firms in Sample	Country	N.o. Firms in Sample
AUSTRALIA	6	LUXEMBOURG	5
AUSTRIA	15	MALAYSIA	8
BELGIUM	20	MEXICO	4
BERMUDA	2	MONACO	1
BRAZIL	5	NETHERLANDS	19
BULGARIA	7	NORWAY	11
CANADA	14	POLAND	26
CHINA	9	PORTUGAL	5
CROATIA	4	ROMANIA	2
CZECH REPUBLIC	1	RUSSIA	7
DENMARK	7	SAUDI ARABIA	3
FINLAND	13	SINGAPORE	2
FRANCE	51	SLOVAK REPUBLIC	1
GERMANY	50	SLOVENIA	4
GREECE	5	SOUTH AFRICA	4
HONG KONG	3	SPAIN	26
HUNGARY	4	SWEDEN	24
INDIA	17	SWITZERLAND	15
IRELAND	10	TAIWAN	1
ISRAEL	4	THAILAND	3
ITALY	30	TURKEY	3
JAPAN	53	UNITED ARAB EMIRATES	1
KOREA	9	UNITED KINGDOM	67
LATVIA	1	UNITED STATES OF AMERICA	123
LITHUANIA	4		



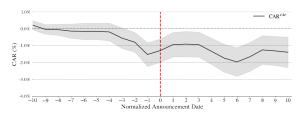
Appendix: Number of firms in sample by year

Year	N.o. Firms in Sample	Year	N.o. Firms in Sample
2005	533	2015	709
2006	568	2016	668
2007	612	2017	667
2008	657	2018	657
2009	668	2019	656
2010	664	2020	670
2011	645	2021	604
2012	646	2022	581
2013	692	2023	557
2014	695		

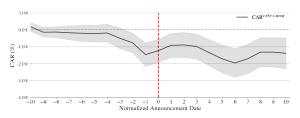
Appendix: Other EUA futures prices

Appendix: Correlation in EUA futures prices

	ICE ECX FRONT	EEX NEAR-TERM	NDEX CONTINUOUS	EUCARB SPOT
ICE ECX FRONT	1.00	-	-	-
EEX NEAR-TERM	0.96	1.00	-	-
NDEX CTINUOUS	1.00	0.96	1.00	-
EUCARB SPOT	0.99	0.96	0.99	1.00



Appendix: EU ETS compliance cycle


Year	Phase	Verification Date	Compliance Date
2005	Phase I	2006-05-15	2006-05-15
2006	Phase I	2007-04-02	2007-05-15
2007	Phase I	2008-04-02	2008-05-15
2008	Phase II	2009-04-01	2009-05-15
2009	Phase II	2010-04-01	2010-05-17
2010	Phase II	2011-04-01	2011-05-16
2011	Phase II	2012-04-02	2012-05-15
2012	Phase II	2013-04-02	2013-05-15
2013	Phase III	2014-04-01	2014-05-15
2014	Phase III	2015-04-01	2015-05-04
2015	Phase III	2016-04-01	2016-05-02
2016	Phase III	2017-04-03	2017-05-02
2017	Phase III	2018-04-03	2018-05-02
2018	Phase III	2019-04-01	2019-05-02
2019	Phase III	2020-04-01	2020-05-04
2020	Phase III	2021-04-01	2021-05-04
2021	Phase IV	2022-04-01	2022-05-03
2022	Phase IV	2023-04-03	2023-05-04

Appendix: Robustness to alternative factor models

(b) Fama-French 5-Factor + Carhart momentum

Appendix: Example of EU ETS regulatory events

Date	Regulatory Event			
2005-05-25	Italian phase I NAP approved			
2005-06-20	Greek phase I NAP approved			
2005-11-23 Court judgment on a proposed amendment to NAP, UK vs Commission				
2005-12-22	Further guidance on allocation plans for the 2008–2012 trading period			
2006-02-22	Final UK Phase I NAP approved			
2006-10-23	Stavros Dimas delivered the signal to tighten the cap of phase II			
2006-11-13 Decision avoiding double counting of emission reductions for projects under the Kyoto Protoco				
2006-11-29 Commission decision on the NAP of several member states				